Information Processing Letters 42 (1992) 167-171

25 May 1992

North-Holland

A short proof of the decidability
of bisimulation for normed BPA-processes

Jan Friso Groote *
Department of Software Technology, CWI, P.O. Box 4079, 1009 AB Amsterdam, Netherlands
Communicated by D. Gries

Received 19 December 1991
Revised 29 January 1992

Abstract

Groote, J.F., A short proof of the decidability of bisimulation for normed BPA-processes, Information Processing Letters 42
(1992) 167-171.

The decidability of bisimulation for normed processes was first proven by J.C.M. Baeten et al. (1987) and subsequently,
using other proof techniques, by D. Caucal (1990) and H. Hiittel and C. Stirling (1991). We provide a short and

straightforward proof.

Keywords: Formal semantics, Basic Progress Algebra, bisimulation, context-free processes, decidability

BPA (Basic Process Algebra) process expres-
sions or BPA processes [1] are given by the ab-
stract syntax

ps=alX|p +p,Ip, P,

Here a ranges over a set Act of atomic actions,
and X over a set Var of variables. In BPA the
symbol + is interpreted as nondeterministic
choice while p, - p, represents sequential compo-
sition of p, and p, (we often omit the “-). For
technical convenience, we also introduce the pro-
cess g, with the convention that £- ¢ =q.

We say that a process expression is guarded iff
every variable occurrence in p occurs in a subex-
pression agq of p. Recursive processes are de-

Correspondence to: J.F. Groote, Department of Philoso-
phy, University of Utrecht, P.O. Box 80.126, 3508 TC Utrecht,
Netherlands.

* The author is supported by the European Communities
under RACE project no. 1046 (SPECS) and ESPRIT Basic
Research Action 3006 (CONCUR).

fined by guarded recursive specifications:
A={X,=pll<i<k},

where the X, are distinct variables, and the p;
are guarded BPA process expressions with free
variables in Var(A)={X,,..., X,}. The variable
X, is called the root of 4. We use letters a, 8, y
and { to range over possibly empty sequences of
variables, i.e. a,B,vy,{ € Var(A)*. The function
length gives the number of variables in a se-
quence.

The operational semantics of a BPA process
expression, given a guarded recursive specifica-
tion A, is a transition relation —, containing the
transitions provable by the following rules:

p__)dpr q_,)aqr
p+qg-“p' p+qg-°q’
p_)apr
o =% 'y a—"¢ a€&€Ac
pq—°p'q

0020-0190 /92 /$05.00 © 1992 - Elsevier Science Publishers B.V. All rights reserved 167

Volume 42, Number 3

p*p
m X=peA
We omit the subscript 4 if it is clear from the
context.

Generally, two processes are considered equiv-
alent if they are bisimilar [5):

Definition 1. A relation R on processes is called a
strong bisimulation relation iff for all (p, g) € R it
holds that
e If p »“p’ then there is a g’ such that g =%g’
and p'Rq’.
e [f g »“¢q’, then there is a p’ such that p =9 p’
and p'Rq’.
Two processes p and g are strongly bisimilar,
notation p < ¢, iff there is some bisimulation
relation R such that pRg.

Lemma 2. Strong bisimulation is a congruence
relation with respect to + and -.

In this paper we restrict our attention to
normed BPA process expressions.

Definition 3. The norm of a process p is defined
by (o represents a sequence of actions):

| p| = min({length(c) | p =" e} U {}).

Let A be a guarded recursive specification. The
norm of A is max({| X |1 X e Var(4a)}). 4 is
normed iff its norm is finite. A BPA process is
called normed, if it has been generated via a
normed guarded recursive specification. Note that
bisimilar processes have the same norm.

Lemma 4. Let p, p’' and q be normed BPA pro-
cesses. If p-qo p'-qthenp= p’,andif q-p <
q-p' thenp < p'.

Proof. For the first fact, note that every step that
can be done by p in p - g must be mimicked by p’
in p’-g. For the second one, note that there is
some smallest trace o such that g-p —“p. The
only way for g-p’ to mimic this is by letting ¢
perform the trace o, i.e. g -p =7 p’. The results
must be bisimilar and hence, p < p'. O

168

INFORMATION PROCESSING LETTERS

25 May 1992

In [1] it is shown that any guarded recursive
specification A can be effectively presented in the
following normal form

",
o _ :
A={X,=) a,a,;ll<i<m
i=1

3

where ¢« is a variable sequence containing at
most two variables, such that the root of 4’ is
bisimulation equivalent to that of A. Moreover,
when 4 is normed, so is A’. By analogy with
context-free grammars A’ is said to be in re-
stricted GNF (Greibach Normal Form). It is worth
noting that A’ can be constructed in such a way
that its size is polynomial in A. For a recursive
specification A in restricted GNF and a sequence
« it holds that if a« —“p, then p is again a
sequence of variables and lengrh(p) < length{a)
+ 1.

In the sequel we assume that A is a guarded
recursive specification in restricted GNF.

Definition 5. A function
f:Var(A) — Var(A)~

is called a Var(A)-assignment. Here Var(A)* is
the set of all nonempty sequences of variables
from Var(A). The function f is extended to se-
quences in the expected way (n > 0):

f(Xl T Xn) =f(Xl) ”'f(Xn)'
We say that f is norm-preserving iff | X|=
| F(X)| and f is idempotent iff f(f(X))=f(X).
Moreover, we say that f is transfer-preserving iff
for all X € Var(A) and a,B € Var(A)*:
® X_“la

= 3Bf(X) "B and f(a)=[(B),
® f(X)—B

= 3Ja X -‘aand f(a)=Ff(B).

Lemma 6. Suppose f is an idempotent, transfer-
preserving Var(A)-assignment. Then for all se-
quences of variables a and f3:

fley=f(B) =

a e f3.

Volume 42, Number 3

Proof. It is s‘ufficient to show that
R={{a, By € Var(4) x Var(4)" |
f(a) =f(8)}

is a bisimulation relation. This is trivial when
a =g or B =¢. So, consider nonempty sequences
a and B such that f(a)=f(B) and suppose a —*
a'. First we show that for appropriate vy, f(a) —>¢
y and f(a’) = f(y).

If «=X, then, as f is transfer-preserving,
f(X)—%y and f(a')=f(y). If a=X,a,, then
f(a) = y,y, such that f(X,)=1y, and f(a,) =v,.
As a —"a' it follows that X, »“«; and a'=
aja,. Hence, as f is transfer-preserving, y, =% v;
and f(aj) =f(y}). So we can conclude that f(a)
—“ vy, and

fla') =f(aja)) =f(a)) f(f(a)))
=f(yD)f(v2) =f(viv2)-

Now we show that if f(a) —»“y, then 8 —* 8’
and f(y)=f(B8"). Assume f(a)—>"y. If B=Y,
then f(Y)=f(a). As f(a)—=°y and f is trans-
fer-preserving, Y »? 8’ and f(B')=f(y). If B =
V1B, f(Y)=1v, and f(B))=17,, then f(a)=
¥1Y2- Because f(a) —* y it follows that y, = v;
and y = vy;y,. As f is transfer-preserving, ¥, —*

Bi and f(B;) = f(y;). Hence, B —° B;B, and

FBIBY) =f(vD)fF(F(B)) =f(¥D)f(v2)
=f(v1v2) =f(7)-

From the previous two paragraphs it follows
that if @ = a’ then B =B’ and f(a') =f(B’).
The case where B can perform the first step is
symmetric. So R is indeed a bisimulation rela-
tion. O

Now we show that if a <> B8 for normed « and
B, then there exists a transfer-preserving Var(4)-
assignment f such that f(a)=f(B). In order to
do so, we assume a total ordering < on Var(A).
This ordering is extended to a total ordering on
sequences of variables as follows:

length(a) < length(B) or
a is lexicographically smaller than
B and length(a) = length(B).

a<p iff

INFORMATION PROCESSING LETTERS

25 May 1992

We also use <, > and > with their obvious
meanings.

Definition 7. The Var(A)-assignment f,, is de-
fined by:

fo(X)=max({a]| X & a}).

Because {a| X < a} is a nonempty, finite set, fo
is well-defined.

Lemma 8. If A is normed, then:
1) fula)=max({ylaey).
() If a =B, then f,(a)=f_(B).
(3) f.. is transfer-preserving.
(4) f.. is idempotent.

Proof. (1) Let a=2Z,---Z, and define 8=

max({y la < y}). Obviously, as f_(a) < 8, f.(a)

<B. Assume B> f_(a). By contradiction, we

show that 8 <f_ (a) and hence that f_ (a)=p.

Let f(@)=X,--- X, and B=Y, ---Y,. Note

that m > n.

® Suppose that X, --- X, =Y, ---Y,. Then m
>n. As |Y,,, - Y, |>0, this means that
| fo(a)l <|B] and hence f., (a) is not bisimi-
lar to B. Contradiction.

@ So it must be the case that there isa 1<i<n
such that X, # Y, Take such { minimal, i.e.
X, - X;_;=Y,---Y,_,. By Lemma 4, it fol-
lows that

Xi X, 2Y ¥, (1)

Now assume that | X;| < |Y;|. There exists
some shortest o such that X, --- X, =7 X,
-+ X,. We can conclude that

Vi Y oL Yy Y,

m

for some possibly empty sequence of variables
£, where
Xigr " X, 00 Y, Y,

m-

Substitution in formula (1) and application of
Lemma 4 gives that X;{ « Y,. If { is not empty,
B is not maximal, as replacing X,;{ for Y; in 8
yields a “larger” sequence. If ¢ is empty, then
X;eY. If X,>Y, then B is not maximal;
replace Y; by X;. If X; <Y, then there is a j

169

Volume 42, Number 3

with f_(Z;)=X,--- X, such that I<i<!"
f:,_(Zj) is not maximal, as X, can be replaced
by Y.

The case where |Y,]| <|X,| goes in the same
way, but is slightly simpler.

(2) Suppose a © B. Then, by (1),

fola)=max({ylaxv})
=max({y| B y})=f.(B).

(3) Suppose X € Var(4) and B=f_(X). As
f..(X) o B, we have the following. If X »9a’,
then 3B’ such that 8 »? 8’ and &' « B8'. By (2) it
follows that f_(a’)=f_(B'). If B—°pB’, then
o’ such that X —%a’ and o' ©fB'. By (2),
fala)=f_(B".

@ As f,(X) e X,

folfu(X))=max({alf.(X)<a})
=max({a| X o a})=f.(X). O

Corollary 9. If A is normed, then a < B iff there
exists an idempotent and transfer-preserving
Var(A)-assignment f such that f(a) = f(B).

Proof. (=) Lemma 6. (=) By Lemma 8 f.
suffices. O

Lemma 10. Letr A be normed. Suppose f is an
idempotent and transfer-preserving Var(A)-assign-
ment. Then f is norm-preserving. O

Proof. Since f is idempotent f(f(X)) =f(X). As
f is idempotent and transfer-preserving, f(X) &
X.So, |f(X)=1X|. DO

Theorem 11. Bisimulation is decidable for normed
BPA processes.

Proof. By Corollary 9 we must check this for
idempotent and transfer-preserving Var(A)-as-
signments. By Lemma 10 such Var(A4)-assign-
ments are norm-preserving. There are only finitely
many of these because each variable has a nonzero
and finite norm. For any sequence of variables «
and B, it is straightforward to calculate whether
f(a) = f(B). It can also easily and effectively be
checked whether such an f is idempotent and

170

INFORMATION PROCESSING LETTERS

25 May 1992

transfer-preserving. So, the existence of a norm-
and transfer-preserving Var(4)-assignment with
f(a) = f(B) is decidable. By Corollary 9 it follows
that it is decidable whether e & 8. O

Remark 12. An original motivation for the work
as presented here was to determine the complex-
ity of deciding bisimulation for normed BPA pro-
cesses. The result in this article leads to a nonde-
terministic exponential algorithm. Recently,
Huynh and Tian have shown that deciding bisim-
ulation for normed BPA processes is in %%, and
hence in PSPACE [4]. It is an open problem
whether a more efficient algorithm exists.

Remark 13. The proof in this paper resembles the
proof given in [2]. The main technical difference
is in the concept of a transfer-preserving Var(A)-
assignment, versus an auto-bisimulable relation in
[2], and in the presentation. For an easy compari-
son we indicate the relation between the two
most important concepts. The proof in [2] de-
pends on the notions of an auto-bisimulable rela-
tion and a fundamental relation. A fundamental
relation is modulo the difference in representa-
tion a norm-preserving and idempotent Var(4)-
assignment. An auto-bisimulable relation is a
wider notion than transfer-preserving, but they
coincide for fundamental relations. The main ar-
gument given in [2] is that the reflexive, transitive
closure of auto-bisimulable and fundamental re-
lations coincides with strong bisimulation equiva-
lence, which is in a sense exactly what Corollary 9
says.

Acknowledgment

I thank Didier Caucal, Dung T. Huynh, Jan
Willem Klop, Alexandru Mateescu, Alban Ponse,
Colin Stirling and Frits Vaandrager for their
helpful comments.

References

[1] J.C.M. Baeten, J.A. Bergstra and J.W. Klop, Decidability
of bisimulation equivalence for processes generating con-

Volume 42, Number 3 INFORMATION PROCESSING LETTERS 25 May 1992

text-free languages, in: JW. de Bakker, A.J. Nijman and terdam, The Netherlands (IEEE Computer Society Press,

P.C. Treleaven, eds., Proc. PARLE Conf, Vol. II (Parallel Silver Spring, MD, 1991) 376-386.

Languages), Eindhoven, Lecture Notes in Computer Sci- [4] D.T. Huynh and L. Tian, Deciding bisimilarity of normed

ence 259 (Springer, Berlin, 1987) 94-113. context-free processes is in £%, Tech. Rept. UTDCS-1-92,
[2] D. Caucal, Graphes canoniques de graphes algébriques, University of Texas at Dallas, 1992.

Theoret. Inform. and Appl. 24 (4) (1990) 339--352. [5] D.M.R. Park, Concurrency and automata on infinite se-
[3] H. Hiittel and C. Stirling, Actions speak louder than quences, in: P. Deussen, ed., Proc. 5th GI Conf., Lecture

words: Proving bisimilarity for context-free processes, in: Notes in Computer Science 104 (Springer, Berlin, 1981)

Proc. 6th Ann. Symp. on Logic in Computer Science, Ams- 167-183.

171

